

Cryopreservation of Gametes and Embryos

By: Fatemeh hassani PhD of Reproductive Biology Clinical Embryologist in Royan Institute

Steptoe & Edwards

Cryopreservation history timeline

Spallazani ; Cryopreserved the firs gametes

Basic Definition

- **Cryobiology** is the branch of biology that studies the effects of low temperatures on living things.
- Cryopreservation is the process of preserving and storing the living systems in a viable condition at low temperatures for future use.

Steps of Cryopreservation

Storage temperature

- Cryopreservation involves cooling and storage of cells in liquid nitrogen at a temperature of - 1960 C where all metabolic processes are arrested.
- It reversibly arrests normal physiological processes

Principles of cryopreservation

- Water in cell: Around 90% of water is free (water) while the remaining 10% bounds to other molecular components of the cell (proteins, lipids, nucleic acids and other solutes). This water does not freeze and called hydrated water
 - Removal of water is necessary during freezing to avoid ice crystal formation, dehydration is limited to the free water
 - Removal of hydrated water could have adverse effect on the cell viability and the molecular function (freezing injuries)

PHYSICS

- 1. Water moves from a region of low osmolarity to a region of high osmolarity.
- 2. Nucleation temperature is the temperature at which water forms ice crystals.
- 2. Solutes dissolved in the solution decrease the nucleation temperature of the solution.

Cryoprotectants additives (CPA)

- The first successful use of a cryoprotectant was in 1949, (glycerol)
- All cryoprotectants are completely miscible with water
- All are hyperosmotic
- They cause the water to form a glass structure rather than ice crystals.
- combination of CPA reduce toxicity
- Decrease the velocity of crystal formation and modify their shape into a smoother pattern

David Whaley et al, Cell Transplantation, 2021

Types of cryoprotectants

- Permeating agents and Non permeating agents
- Permeating agents
- Ethylene glycol
- > Glycerol
- propandiol
- Dimethyl sulfoxide (DMSO)
- Propylene glycol
- Acetamide
- more slowly than water Inside the cell
- stabilize intracellular proteins
- minimize osmotic damage due to electrolyte concentration effects

Ethylene Glycol is an ideal candidate for human embryo vitrification, high permeation ability and low toxicity compared with other CPAs

Types of cryoprotectants

- Non permeating agents such as high molecular weight
- Saccharides (Sucrose, Trehalose, Glucose, and Galactose)
- Macromolecules (Ficoll, Polyvinyl pyrrolidone, Polyethylene glycol)
- Macromolecules are less toxic to the cells compared to permeating agents
- Egg yolk has been added to cryopreservation medium to preserve animal sperm, this is no longer recommended
- Bacterial contamination
- Batch-to-batch variation

Mechanism of Action

- Permeating Agents
- 1. Reduction in electrolyte concentration
- 2. These agents diffuse out of cells more rapidly during warming and prevent osmotic swelling

Nonpermeating Agents

- 1. Osmotic dehydration during cooling
- 2. Restrict water influx by acting as an osmotic counter force
- Functions as an osmotic buffer

methods of cryopreservation

- There are two methods of cryopreservation
- Slow freezing
- ***** Vitrification

Slow Freezing

• As the temperature is reduced, less and less energy exists in the system to drive these kinds of molecular motions.

Slow freezing

- The procedures used for oocytes, embryos and ovarian cortex are generally quite similar.
- The cells or tissues exposure to CPA and frozen in straws or ampules
- Following CPA exposure the temperature is slowly lowered, and ice crystal growth is initiated in the solution ("seeding"). The ampules or straws are seeded at -6.5 to -7°C, cooled slowly at 0.3-0.5°C /min to approximately 40°C, then quickly cooled to -150°C before final transfer into liquid nitrogen for storage.

Slow freezing

- A brief pre-equilibration of cells in cryoprotectant solutions: slow, gradual, controlled cooling at rates optimized for the type of cells being cryopreserved
- Special programmable cell freezing equipment
- requires 3-6 hours to complete

Slow Freezing

Vitrification

- In other systems temperature reduction causes
- rapid cooling of liquid water
 glass (Amorphous ice)
- Molecules do not have enough time to form a crystal lattice

Vitrification Protocol

 Hold the Cryotop under a microscope and bring in focus by moving it up and down. If it is difficult to focus on, fix the Cryotop sheet on the bottom of an empty dish and put the embryo on it

Vitrification Protocol

Vitrification Protocol

• Transfer the oocyte into the culture medium. Culture time for recovery is 2 hours.

Vitrification Devices

• Write the necessary information on the bar of Cryotop

Vitrification Devices

• Put the embryo on the distal end of Cryotop sheet with minimum volume of VS solution (0.1µl or less) under the microscope.

Good example

Bad example

Carrier systems

Vitrification Devices – Open or Closed

Open Devices (e.g. Cryotop)

- Faster Cooling/Warming rates
- Direct exposure to LN2
- ➢ Contamination

Closed Devices (e.g. HSV)

- Slower Cooling and/or Warming rates
- ► No direct contact with LN2

Vitrification VS Conventional slow cooling

Table 1 – Comparison between the slow-freezing and vitrification methods									
Characteristic	Procedure								
	Slow freezing	Vitrification							
Working time	More than 3 h	Fast, less than 10 min							
Cost	Expensive, freezing machine needed	Inexpensive, no special machine needed							
Sample volume (µL)	100–250	1–2							
Concentration of CPA	Low	High							
Risk of freeze injury, including ice crystal formation	High	Low							
Post-thaw viability	High	High							
Risk of toxicity of CPA	Low	High							
Status of system	Closed system only	Opened or closed system							
Potential contamination with pathogenic agents	Low	High							
Manipulation skill	Easy	Difficult							
CDA amontratative agent									

CPA, cryoprotective agent.

- The capacity of a cryostore depends on the freezing strategy of the clinic and its activity, i.e. the number of cycles with potential freezing performed per year.
- ✓ The number of dewars/ vapor stores can then be predicted, always allowing for a spare dewar for emergency use.

>All patients should be screened for major viral markers in advance to minimize the risk of potentially infective material.

- Use different storage tank:
- ✓ Contagious viral disease sperm tank
- ✓ Emergency or clean tank
- ✓ Sterilization of liquid nitrogen with ultraviolet irradiation (Parmegiani et al., 2010)

- Colored goblets help in keeping track of samples
- They can be arranged in alphabetical order, as shown here: aqua, black, blue, brown, green, gray, orange, pink, purple, tangerine, yellow, or in the order of the rainbow/white light spectrum.
- A canister that has just been removed from liquid nitrogen, containing straws that are distributed between different colored goblets.

Patients who have the same name: all frozen material must have a unique identifiable code, usually with **three identifying features (full name, date of birth, unique clinic accession number)**; appropriate checks/witnessing will decrease the chance that cryomaterial for the wrong patients is ever removed from storage.

All dewars must be inspected regularly for damage, making sure that the vacuum is functional. Visual inspection of the outside can sometimes reveal "cold spots," which may indicate a fault with the vacuum.

- ✓ Failure to check dewars can have disastrous consequences for cryopreserved material.
- ✓ Dewars should be equipped with an alarm that is triggered by low LN2 levels, either via a platform base that registers weight change, or with a system that monitors temperature inside the dewar

An Ohio fertility clinic said that the remote alarm system on its storage tank was turned off, so it didn't know that the temperature had fluctuated, and that the consequences were worse than it initially thought — all 4,000 eggs and embryos in the cryofreezer are likely nonviable.

- ✓ It is important to maintain contact with patients who have their gametes/embryos in storage, and confirm that storage is in accordance with their wishes. The regulatory bodies of many countries produce their own consent forms to cover a defined period of storage.
- ✓ In-house consent forms can act as legal contracts between the patients and the clinic, clearly defining the action to be taken if the patients fail to maintain contact with the clinic or cannot be contacted.

HFEA (00)6 FORM FOR CONSENT TO STORAGE AND USE OF SPERM AND EMBRYOS

N.B. Do not sign this form unless you have received information about these matters and have been offered counselling. You may vary the terms of this consent or withdraw this consent at any time except in relation to sperm or embryos which have already been used. Please insert numbers or tick boxes as appropriate.

Full name (bl	ock ca	apitals):	TIT		ĿТ	1 1		1	1	1						
Any other na	me by	y which you have been known:						1								
I. USE																
a. I hereby	conse	nt to the use of my sperm for the	following p	ourposes	:											
	i.	in treating a named partner	YES	NO												
		Full name of partner:					ł		I	1		1		1	I	I
	ii.	in treating others	YES	NO												_
	iii.	in any project of research	YES	NOL												
Please state	any pa	articular conditions as to use:														
b. I hereby egg(s) for	conse r the f	nt to the use of my sperm to fertil ollowing purposes:	ise egg(s) i	n vitro ar	nd to t	the us	se o	fem	bryo	o(s)	deve	lope	ed fr	ron	h th	ese
	i.	in the treatment of myself together with a named partner	YES	NO												
		Full name of partner:					1					1	1	1	ĩ	
	ii.	in treating others	YES	NOL												
	iii.	in any project of research	YES	NOL												
Please state	any ot	her conditions as to use (eg on th	e use of pa	articular e	embry	os):										

Signature:	gnature: Date: LLL LLL							
II. STORAG	ε							
a. I hereb	y conse	ent to the storage of my sperm:						
Storage *Centres	e period	d in years Maximum (10 years)* YES I NO Led to store sperm for longer periods for limited uses only.	If less plea	ase state YE	ARS			
b. I hereby	y conse	ent to the storage of embryo(s) developed in vitro fro	om egg(s) fertil	ised with my	y sperm:			
Storage	e period	d in years:						
	Fiv	ve years YES NO Ten years YES	NO M	ore than ten	years YESL	NO		
	If le	ess than five years or some other period please state	e the number o	of years: YE	ARS L			
This does no	been s	igned by a registered medical practitioner.						
c. If I die o	or beco	me mentally incapacitated my sperm or the embryc	o(s) developed	in vitro from	n egg(s) fertili	sed with		
iny ope	:	be allowed to parish	VEC	NOLL	VEC	NOLL		
		be allowed to perish	TES [
	п.	1a. (for sperm) and 1b. (for embryos) above	YES	NO	YES	NO		
	iii.	continue in storage for other purposes (please specify below)	YES	NO	YES			
d. Any oth (eg for Please	ner con particu state:	ditions of storage lar embryos).						
e. I under will hav	stand the	hat unless they are used beforehand embryo(s) deve allowed to perish at the end of the storage period s	eloped in vitro pecified at llb.	from egg(s)	fertilised with	h my sperm		
			DAY	MONTH	YEAR			
Signature:			Date:					
- 0								

A specific email group within the clinic for patients with frozen material can be helpful in making sure that communications from patients always receive the appropriate attention.

A checklist to cover all eventualities is helpful in conducting a cryostore audit, including the question "Have the patients responded to any communication or sent any new instructions regarding consents?" If any part of the checklist for disposal cannot be completed, further investigation is required before removing any cryopreserved material from the cryostore.

- ➤ A change in consent to provided extended storage
- A change in consent for removal of gametes/embryos from storage and allowing them to perish
- ➤ A couple separate, one partner requests continued storage and the other requests termination of storage. Individual gametes may be stored accordingly, but problems arise in the case of embryos. In the UK, a "cooling off" period of one year is recommended to see if the couple can agree on a united decision; if they cannot agree, storage of cryopreserved embryos must be terminated.

Couples approaching the end of their defined storage period should be contacted in advance, so that they have sufficient time to consider the options (usually to remove the gametes/embryos from storage, extend storage, or donate the material to a licensed research project).

Couples may have several gametes/embryos in storage generated in different treatment cycles. The gametes/embryos from specific dates must be used in accordance with the patients' wishes. Cryostorage from different dates should be highlighted in the patients' notes.

Mistakes can be avoided by establishing a system that includes robust checks before any gametes/embryos are removed from storage. Straw labels should have a unique cryonumber for the couple, and labels from thawed straws can be attached to the lab report for the thaw.

Principles and Practice of Fertility Preservation

EDITED BY: JACQUES DONNEZ S. SAMUEL KIM

Thanks for attention

Practical tips for vitrification

- ✓ Participation in workshops provided by companies that supply vitrification media can be helpful, where experts can demonstrate optimal use of specific devices and media.
- \checkmark Visiting a lab that has a good vitrification program can also be helpful.
- ✓ The vitrification technique can be practiced using unfertilized oocytes or abnormally fertilized embryos (both with patient consent) before it is applied

in treatment cycles.

