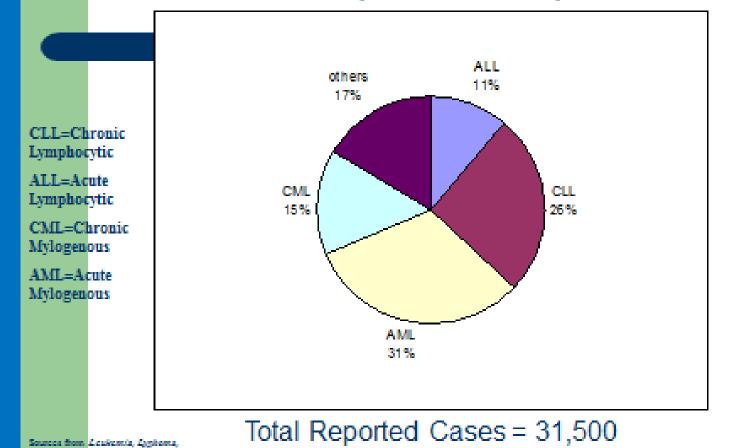
IN THE NAME OF GOD

Title: Correlation between vaccination status and the risk of childhood acute lymphoblastic leukemia

Mohammad Soleiman Soltanpour, Kambiz Davari, Morteza Hashemi **Presented by** : Mohammad Soleiman Soltanpour Ph.D of Hematology and Blood Banking


Epidemiology of Leukemia

Leukemia is one of the most common cancer in children and teens, accounting for almost 1 out of 3 cancers.

About 3 out of 4 leukemia among children and teens are acute lymphocytic leukemia (ALL).

 Most of the remaining cases are acute myeloid leukemia (AML).

Demographics of Leukemia Patients (2001 Data)

héjaloma Shete 2001

Epidemiology of Leukemia

ALL is most common in early childhood, peaking between 2 and 5 years of age.

AML tends to be more spread out across the childhood years, but it's slightly more common during the first 2 years of life and during the teenage years.

- Ionizing radiation during prenatal and postnatal life
- Paternal smoking
- Exposure to household pesticides
- Benzene[.]
- Genetic and epigenetic factors
- Gene deletion
- Gene mutation
- Chromosomal translocation

immune dysfunction may play an important role in the etiology of childhood leukemia.

 Leukemia is essentially a malignancy of the immune system.

Early exposure to infections may modulate the development of immune system and may be protective for childhood ALL.

Greaves in 1997 stated that both the pattern and timing of infections in early life is critical to the developmental programming of the immune system.

- Current lifestyles
- Improvement of hygiene
- less exposure to infections

 causes defect in appropriate development of immune system.

- Genetic predisposition
- Inappropriate development of immune system

 Results in an abnormal immunological response thus increasing the risk of leukemia

 Vaccination due to its role in stimulating the immune system, has been considered a potential modifier of the risk of childhood leukemia.

• Vaccination timing and dosage

Pediatric Vaccination Schedule

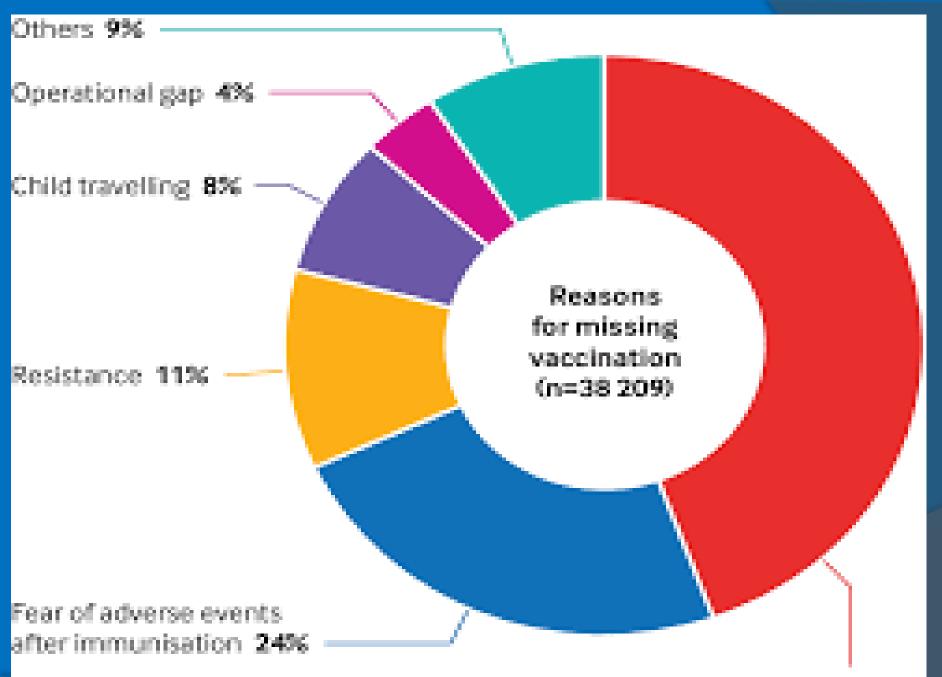
Vaccines are important to prevent getting serious illnesses. Here is a list of recommended pediatric vaccines from birth to age 18. Please talk with your child's doctor about the vaccines your child needs and when.

Vaccines	Birth	1 Month	2 Months	4 Months	6 Months	12 Months	15 Months	18 Months	19–23 Months	2–3 Years	4–6 Years	7–10 Years	11–12 Years	13–18 Years
DTaP			•	•	•						•		•	
НерА														
HepB	•													
Hib			•	•	•									
HPV								-					•	
Influenza									Yea	irly				
IPV											•			
MMR						•	•							
MCV4														Booster
PCV			()	•										
RV				•										
Varicella							•							

Given at these ages

DTaP (Diptheria, Tetanus and Pertussis) HepA (Hepatitis A) HepB (Hepatitis B) Hib (Haemophilus Influenzae Type b) HPV (Human Papillomavirus) Influenza (Flu) The vaccine can be given once during the age range

IPV (Polio) MMR (Measles, Mumps and Rubella) MCV4 (Meningococcal) PCV (Pneumococcal) RV (Rotavirus) Varicella (Chickenpox)



5489.10715.MKT8/15

Sources: The American Academy of Pediatrics, the Centers for Disease Control

njhealth.org 1.877.CALL NJH (877.225.5654)

Awareness gap 45%

Vaccination

A study from Australia reported

 A increased risk of ALL leukemia with vaccination against diphtheria, pertussis (whooping cough), and tetanus

While other studies did not support such an association.

Vaccination

- Also, studies from USA, Canada and Finland have reported:
- A reduced risk of leukemia with Bacille Calmette–Guerin (BCG) vaccination.
- However, a study in New Zealand showed no effect.

Aim of present study

 Analyzing the correlation between diphtheria, pertussis, tetanus (DPT), poliomyelitis, MMR, hepatitis B, BCG and *Haemophilus influenzae* type b (Hib) vaccination and risk of ALL leukemia.

Material and Methods

Search Strategy

- Scopus,
- PubMed,
- Google Scholar,
- Science-Direct,
- Web of Science,
- ProQuest,
- ClinicalTrials.gov,
- Directory of Open Access Journals,

Search Strategy

- Immunization or immunized
- Vaccines or vaccine or vaccination or vaccinated
- Risk or risks or association or correlation or odds
- Ieukemia or leukaemia or leukemic or leukaemic
- child or children or childhood or baby or infant or infants or newborn or neonates or pediatrics or pediatric

Selection criteria: inclusion criteria

 Studies reported:
 the association of early vaccination with leukemia in children under 20 years old and vaccines were included in this study.

Selection criteria: Exclusion criteria

- (i) unreliably extracted data;
- (ii) leukemia cases reported in adults;
 (iii) overlapped data sets;
- (iv) abstract-only articles,

 All studies identified were reviewed independently for eligibility.

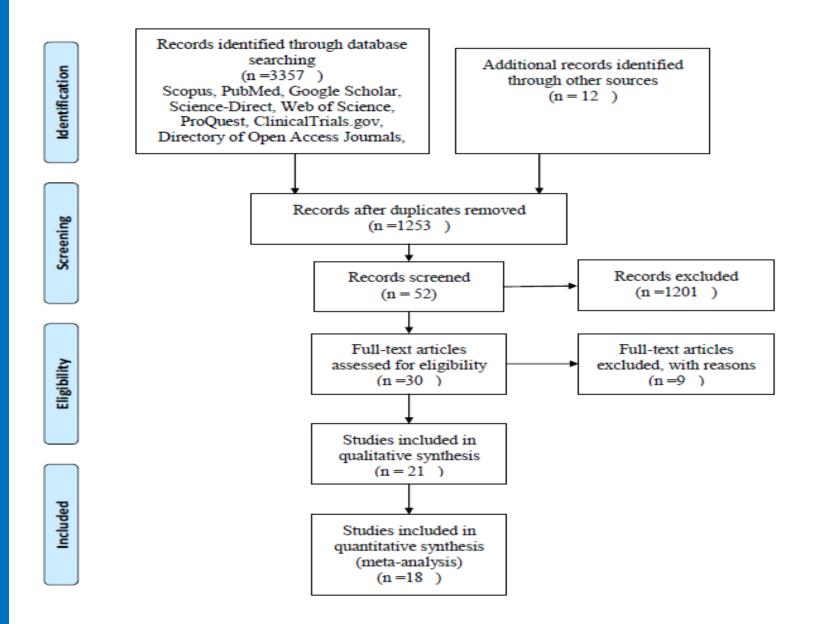
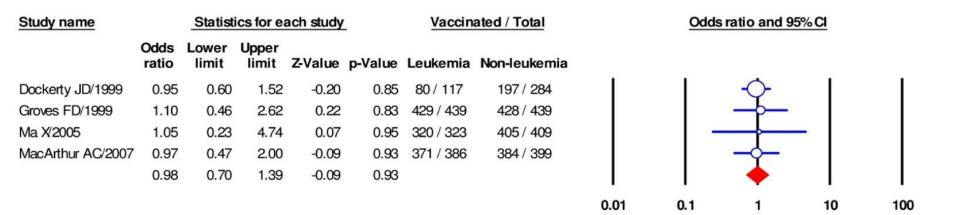


Figure 1. PRISMA flow diagram of studies' screening and selection.


Statistical methods

- Comprehensive Meta-analysis software STATA version 14 was used.
- Summary odds ratios (ORs)
- 95% confidence intervals [CIs] Heterogeneity: Q statistic and I-squared tests.
- Heterogeneity was considered statistically significant if the P-value was < 0.1 or Isquared value was > 50%

Results

Forest plot showing meta-analysis of polio sip vaccination

Polio sip vaccination

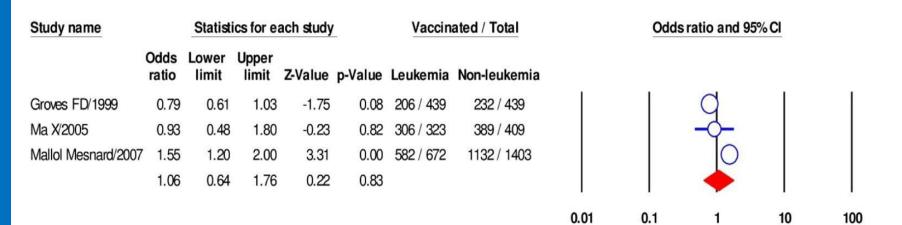
Forest plot showing meta-analysis of MMR vaccination

MMR vaccination

Study name		Statisti	cs for ea	ach study	-	Vaccin	ated / Total		Odd	Odds ratio and 95	Odds ratio and 95% Cl
	Odds ratio	Lower limit	Upper limit	Z-Value	p-Value	Leukemia	Non-leukemia				
Dockerty JD/1999	1.02	0.39	2.70	0.04	0.97	6/112	15 / 285	1			
Groves FD/1999	1.03	0.66	1.59	0.11	0.91	395 / 439	394 / 439				
Ma X/2005	0.92	0.52	1.61	-0.31	0.76	299 / 323	381 / 409				
MacArthur AC/2007	0.93	0.62	1.40	-0.35	0.73	334 / 388	346 / 398				
	0.96	0.75	1.24	-0.28	0.78					🔶	🔶
								0.01	0.01 0.1	0.01 0.1 1	0.01 0.1 1 10

Forest plot showing meta-analysis of rubella vaccination

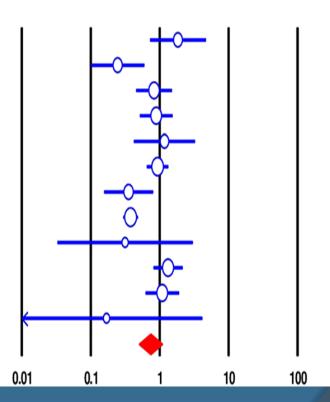
Rubella vaccination


Study name	Subgroup within study		Statist	Statistics for each			Vaccinated / Total		
		Odds ratio	Lower limit	Upper limit	Z-Value	p-Value	Leukemia	Non-leukemia	
Dockerty JD/1999 A	Alone	0.45	0.05	3.90	-0.72	0.47	1/115	5/262	←
Dockerty JD/1999 C	MMR	1.02	0.39	2.70	0.04	0.97	6/112	15 / 285	
Groves FD/1999	MMR	1.03	0.66	1.59	0.11	0.91	395/439	394 / 439	
Ma X/2005	MMR	0.92	0.52	1.61	-0.31	0.76	299/323	381 / 409	
MacArthur AC/2007	MMR	0.93	0.62	1.40	-0.35	0.73	334/388	346/398	
Mallol-Mesnard N 2007	Alone	1.09	0.78	1.52	0.52	0.60	540 / 596	1104 / 1229	
		1.00	0.82	1.23	0.03	0.98			

Forest plot showing meta-analysis of measles vaccination

	Measles vaccination														
Study name	Subgroup within study		Statistics for each study						Odds ra	tio and	95% Cl				
		Odds ratio	Lower limit	Upper limit	Z-Value	p-Value									
Dockerty JD/1999 A	Alone	1.65	1.06	2.57	2.22	0.03		1	1	-	0-	T	1		
Dockerty JD/1999 C	MMR	1.02	0.39	2.70	0.04	0.97			-	_	-				
MacArthur AC/2007	MMR	0.93	0.62	1.40	-0.35	0.73			-	-0-					
Mallol-Mesnard N/ 2007	Alone	1.05	0.75	1.48	0.31	0.76				-0-	6				
Ma X/2005	MMR	0.92	0.52	1.61	-0.31	0.76			_	-0					
Nishi M/1989	Alone	0.25	0.10	0.60	-3.08	0.00	-		-						
Groves FD/1999	MMR	1.03	0.66	1.59	0.11	0.91					5				
		1.02	0.85	1.23	0.25	0.80				٠					
							0.1	0.2	0.5	1	2	5	10		

Forest plot showing meta-analysis of HiB vaccination


HiB vaccination

Forest plot showing meta-analysis of BCG vaccination

BCG vaccination

Study name	St	atistics fo	r each si	udy	Vaccinated / Total				
	Odds ratio	Lower limit	Upper limit	p-Value	Leukemia	Non-leukemia			
Dockerty JD/1999	1.84	0.72	4.71	0.20	8/120	11 / 295			
Nishi M/1989	0.25	0.10	0.60	0.00	48/63	117/126			
Salonen T/1976	0.83	0.46	1.51	0.54	348/373	352/373			
Von Kries R/2000	0.89	0.51	1.54	0.68	107 / 129	273/323			
MacArthur AC/2007	1.17	0.42	3.27	0.76	8/376	7/385			
Mallol-Mesnard N/ 2007	0.93	0.65	1.34	0.71	624/672	1309 / 1403			
Oispen RG/1976	0.35	0.16	0.81	0.01	6/112	85350/620114			
Davignon L/1971	0.38	0.30	0.48	0.00	96/287	1092400 / 1917000			
Sutherland I/1982	0.32	0.03	3.03	0.32	1/4	13598 / 26465			
Mathe/1974	1.32	0.81	2.16	0.26	76/130	67 / 130			
Petridou/1997	1.09	0.62	1.91	0.76	22/153	40 / 300			
Comstock GW1975	0.17	0.01	4.17	0.28	0/1	5524 / 8340			
	0.73	0.50	1.08	0.12					

Forest plot showing meta-analysis of HBV vaccination

HBV vaccination

Study name		Statist	ics for e	ach study	<u>_</u>	Vaccin	ated / Total		Odds ratio and 95% Cl									
	Odds ratio	Lower limit	Upper limit	Z-Value	p-Value	Leukemia	Non-leukemia											
Dockerty JD/1999	1.03	0.67	1.60	0.15	0.88	62/114	151 / 282			1		-						
MacArthur AC/2007	1.17	0.42	3.27	0.31	0.76	8/376	7 / 385			+	-	-						
Mallol-Mesnard N/ 2007	1.04	0.86	1.26	0.38	0.71	250 / 672	510 / 1403				\diamond							
Ma X/2005	0.75	0.45	1.23	-1.14	0.25	289 / 323	376 / 409			+	-							
	1.00	0.85	1.18	0.06	0.95						•							
								0.1	0.2	0.5	1	2	5	10				

Discussion

 The main finding of present study was that childhood vaccination status was not significantly correlated with the risk of ALL.

 However, inconsistencies in existing findings with respect to vaccination and childhood leukaemia have been reported. Some studies reported decreased
 risks of leukemia associated with measles vaccination, DTP vaccination, Haemophilus influenzae type B (Hib) vaccination, and BCG vaccination for tuberculosis (16).

 Timely completion of early childhood immunizations may decrease the risk of
 Ieukemia through general improvements in immune functioning. The reasons for inconsistent results may be related to "Exposure assessment" in different studies.

- Few studies:
- Written vaccination records
- Most studies used:
- Interviews with parents
- Self-administered questionnaires by parents.

Thanks for

your attention